WHO? WHAT? WHEN? WHERE? HOW? WHY?

Written by Science Knowledge on 1:20 AM

A good science article answers all these questions. Especially it answers the question ‘why?’, explaining to the reader the reason the research was carried out, and why it is important to humanity. The reason why is often taken for granted in scientific writing, which is a big mistake when writing for a wider audience.

Each question helps to establish the meaning of the science to the reader. ‘Who’, for example, explains who is affected by the science, and who performed it. This conveys both its relevance to society or industry, and its trustworthiness, embodied in the name of the research institute or corporation. ‘What’ explains what was actually done. ‘When’ conveys to the reader whether this is new knowledge, or ‘news’. ‘Where’ is important because people habitually think of their own locality first, and science performed locally by local researchers addressing local problems is of much greater interest than science performed in some other country by and for people they have never heard of. ‘How’ explains how the science was actually performed and how it affects the community.

Source of Information : CSIRO-Open Science Sharing Knowledge in the Global Century 

JARGON AND BUREAUCRATESE

Written by Science Knowledge on 1:19 AM

Scientists use language in very particular ways in order to convey specialized meanings. This works fine among the peer group but it can lead to confusion, ambiguity and misinterpretation externally. Because science itself is concerned with being as precise as possible, it is a great shame if it\ loses precision because its audience misunderstands what they are told. In science, new words are often coined to describe new phenomena, or else old words are given new meanings to which the public is not privy. Scientists sometimes forget this.

For example, a soil scientist may refer unthinkingly to a soil layer as a ‘horizon’, whereas his lay audience may wonder what that line the sun goes behind is doing at the bottom of a hole. This is a case of one word having two (or more) meanings: technical and general. Classically, scientists often refer to their ‘models’, blithely unaware that many people in society think a model is an elegant person sporting stylish clothes, or alternatively, a small plastic aeroplane. In the sentence ‘We are using a new model to predict rabbit populations…’ the average person may be puzzled why the scientist would employ a mannequin to forecast rabbit plagues – and probably wonder how the scientist came by such a generous budget!

Scientific terms slip off the tongue, or the keyboard, very easily, and great care must be taken to avoid them or at least to translate them for the audience. Is a base an electron pair, a headquarters or the bottom of something? Is a phase part of a waveform cycle or a period in your life? Is a port the plughole in a computer, a place for ships to dock or a fortified wine? Is a bond a chemical link, a financial instrument or a manacle? Context will usually supply the answer, but one can never be sure what all readers will make of it and science writing must always be scanned carefully for such ambiguities.

A good test for whether a word is jargon is to imagine oneself standing at the supermarket checkout and saying the word to each person as they come past the cash register. How many would be able to provide even a rough explanation of the meaning? If the answer is ‘not many’, then the term should be avoided and a more common term used.

Avoiding scientific jargon is not as hard as it seems, as articles written for the public, for government and even industry usually focus on the application of the science, not on the science itself. It is nearly always possible to describe the application of science in plain language. Nevertheless, scientists sometimes complain that the translation of science into plain language ‘devalues’ it or ‘dumbs it down’. However, if the use of scientific terminology will only cause the audience to misunderstand – or, worse, completely misinterpret what is being said – then it makes no sense to use it, as the result will only be confusion. Scientists should never expect people outside their discipline to understand the exact meaning they ascribe to a specialised term – even an apparently simple one like ‘model’. Every effort should be made to re-phrase the language so that it has meaning for the audience. This sometimes takes more time and effort than some researchers can spare, and is the reason for the growing value of the skilled communicator as a messenger and interpreter between science and society.

Another challenge for the science writer turning scientific reports or articles into stuff the public can understand is ‘bureaucratese’: the leaden language of the public servant. Nowadays science is often twice as difficult to understand because it mingles scientific jargon with bureaucratese. This language is supposed to be dispassionate, but in fact it is usually clumsy, verbose and hard to read. It too favours the passive and the subjunctive, as well as a whole lexicon of specialist terms intended to exclude the uninitiated. Indeed, bureaucratese is often deliberately designed not to be understood, or else to be ambiguous, in order to withhold knowledge (and power) rather than share it. Because a great deal of science happens in bureaucracies – in universities, research agencies or government departments – the two languages often become horribly intermingled, resulting in a disaster for clarity and for the communication of science. In writing about science, it is very important to purge bureaucratic language as well as technical terms.

A nasty bureaucratic habit is to refer to everything by its initials or its acronym. This is fine if you know what it means – but is simply gobbledegook to the general public. Acronyms are bad in several ways: first, because they are meaningless by themselves and cannot even be looked up in a dictionary; second, because the phrase from which the initials are drawn is usually badly chosen and not easy to guess; third, because acronyms break the flow of meaning by forcing the reader to pause and puzzle over them; and fourth, because they sneer at the person who has not been initiated into the secret of their meaning.

A related phenomenon, even where the acronym is explained, is ‘alphabet soup’ – the excessive use of initials, as in the following example:

The FAIMMS sensor network will utilise leading edge technology to provide real-time 3D profiles of reef systems at seven sites along the Great Barrier Reef (GBR). AIMS is the national operator of FAIMMS, which is one of the components of the Great Barrier Reef Ocean Observing System (GBROOS), for which AIMS is also responsible. GBROOS is part of a nation-wide collaborative program, the Integrated Marine Observing System (IMOS), designed to observe the oceans around Australia.

It is possible for the general reader to fathom what is meant here, but the over-reliance on obscure abbreviations creates constant hiccups in the flow of meaning and should be avoided.

Another common vice of scientific (and bureaucratic) writing is to attach too many adjectives to a single noun. Sometimes as many as five, and even seven, adjectives may be piled onto one poor, struggling, inoffensive little noun. The words ‘one’, ‘poor’, ‘struggling’, ‘inoffensive’ and ‘little’ are the adjectives that describe the word ‘noun’. The use of such strings can perplex the reader, who has to decide which adjective is the most important in the context, and how each adjective affects all the others. The use of too many adjectives to over-describe an object is bad writing and unnecessary. If the adjectives are essential they can be distributed over several sentences. In reality, however, most of them can be left out without losing meaning. This improves both clarity and ease of reading. When pruning one’s work, it is good practice to remove all adjectives. Then go back and see which ones are truly vital and allow these alone to stand.

Source of Information : CSIRO-Open Science Sharing Knowledge in the Global Century 

STRUCTURING THE ARTICLE

Written by Science Knowledge on 1:17 AM

The traditional scientific journal article begins with a few general statements about things that are usually well-known or accepted. It then outlines the background to the research, provides a description of the experiments carried out and their methods, reports and discusses the results, then finally draws a conclusion from them and discusses its wider implications. The reader must work their way through each of these steps in order to be rewarded with the finding.

A science article written for the media or a lay audience, on the other hand, adopts almost exactly the opposite structure. It reports the main finding and its impact on society in the very first sentence, then explains who did the research and why, adds further detail and finally, if there is room, goes on to discuss what most scientists would see as the main game – the research itself. This is because audiences are usually more concerned about how the science affects them directly than they are with the method by which it was achieved. They are users of science, not its practitioners.

In journalism, the conclusion is nearly always presented first and the rest of the article then expands on this, providing the reader with the supporting evidence for the initial claim and the background to it. This structure has since become common in many forms of reporting: corporate and government reports, for example, present their findings in an executive summary – often a series of terse bullet points – so the busy reader can seize the essence without having to wade through the detail. In journalism, most readers read the first few paragraphs, but few make their way to the end of the article. If important information is placed here it will be lost (or even cut out completely by the editor).

This ‘upside down pyramid’ article structure, with the most important fact first, achieves a much higher impact on the reader and is likely to stick in their mind longer. Where there are several important findings from the research, the article will present them one at a time in the first few paragraphs, rather than risk obscuring or losing some key points by running them all together.

Scientists often assume the reason they are doing their work is selfevident, but this is often not the case. A good science article therefore makes clear, in its opening paragraphs, why the research is being carried out – to save lives, prevent environmental damage, improve industrial productivity, and so on. Indeed, it is on this simple fact that the importance of the article and its chances of publication depend. If it is omitted, the relevance of the science to the reader may well be lost. The editor may regard the story as unimportant and ‘put it on the spike’ (discard it).

The credibility of science with the public often depends on who performed it, so the science article identifies the researchers and institutions involved early on. This is a sign to the reader – who may be unfamiliar with journals and peer review – how trustworthy the information is. However, a good article or media story does not waste space on long wordy names, titles or teams.

A good science article often goes directly to the meaning of the science to society, rather than to the science itself. This is especially the case with a new technology or piece of applied science. The exception would be a ‘blue sky’ discovery, or findings from fields such as astronomy or palaeontology without immediate practical application. In these cases, the article will dwell on the sheer wonder or novelty of what has been found and seek to engage the reader through their curiosity about the natural world.

To engage the reader at the outset it is vital to choose a strong heading. Unlike a scientific paper, where the heading often describes the research, a heading in the media, a press release, a book or a report is intended to catch the eye and capture the attention of the reader – not to inform them. It is usually concerned with the impact of the science, not with the science itself. It is an advertisement for what follows, not a synopsis of it. For this reason, a strong heading is usually short – three to five words work best. An attractive heading may also use mystery, humour or an unusual word to attract the reader. All it needs to do is entice them into reading the first paragraph, which then delivers the main message of interest and lures them to read on.

An effective piece of science writing often has only one idea per sentence. As mentioned above, this gives the reader time to digest important facts. Where high impact is required, occasionally use only a single sentence per paragraph.

The white space between the paragraphs emphasises the point being made in a delicate way, without using exclamation marks, underlining, bold type or italics. In fact, the last three can offend the reader, as they are the typological equivalent of shouting at them (like using CAPS in an email).

Good science writing is usually very economical in its use of language. It compensates for complexity by elegance and simplicity of expression and choice of words. It avoids pomposity or talking down to the reader. It goes directly to the wider significance of the research and why it was done. It explains its relevance to the general reader, rather than to science. It seeks to convey a sense of wonder, where appropriate, but does not exaggerate or overstate. It is checked with the scientist, to ensure accuracy. If there is room, it refers to doubts, criticisms and alternative interpretations of the science.

Source of Information : CSIRO-Open Science Sharing Knowledge in the Global Century 

CURING OLD VICES

Written by Science Knowledge on 1:14 AM

Common vices in science writing include the use of the passive voice instead of the active, the use of the subjunctive mood instead of the present or future tense, the over-use of adjectives to describe a single noun, and the use of professional terminology or ‘jargon’. It is quite easy to purge oneself of these bad habits without having to go back to school to study grammar and syntax.

A great deal of science is written in the passive voice, rather than the active. The active expresses the action directly: ‘We pursued the research’. The passive focuses on the object being acted on: ‘The research was pursued by us’. The reason for overusing the passive voice probably lies in the desire of scientists to appear objective and impersonal when describing experiments and their results. However, science uses the passive to gruesome excess; this makes the writing ponderous and less easily digested than it should be. It adds unnecessary words – in the above example, 50 per cent more words are used by the passive. Writing for the public should avoid the passive voice as far as possible (e.g. instead of saying ‘The passive voice should be avoided in writing for the public …’.). Even scientific editors no longer favour the passive. Search for it in your writing and convert it ruthlessly to the active voice. Your prose will sparkle with new vigour and directness.

For example: ‘In this study the chemodynamics of heavy metals in soils were investigated.’ Why not simply ‘In this study we investigated the chemodynamics of heavy metals in soils’? Or instead of ‘A new treatment for diabetes has been developed by Australian scientists’, just write ‘Australian scientists have developed a new treatment for diabetes.’

The use of the subjunctive mood is a common feature of science writing, which makes it more turgid and its meaning more vague and uncertain to the reader. Without getting into technicalities, the subjunctive is characterised by the use of words like ‘would’, ‘could’, ‘should’, ‘may’ and ‘might’. These are often preferred by scientists to the use of the present tense (is, are) or the future tense (will, shall). However, they increase uncertainty in the reader as to what is meant – and removing them often does little damage to the sense. For example, in the sentence ‘Heavy metals could pollute soil or groundwater … ’ the word ‘could’ can be omitted: ‘Heavy metals pollute soil or groundwater … ’ This is simply a cleaner, more direct way of writing, which avoids the subjunctive but does not significantly alter the intended meaning. It expresses the meaning more directly and with less uncertainty.

Of course, science often wants to convey a degree of uncertainty, and this is the reason for the ubiquitous ‘could’ and ‘would’. However, this is often faulty reasoning on the part of the writer. Uncertainty can be conveyed directly by stating that the conclusion is not certain, or open to different interpretations, and explaining why. This is more direct and honest than using syntax to obscure the meaning, and the reader will appreciate it. Where it is unavoidable, the word ‘may’ is often preferable: ‘The universe may end, not in a bang but a whimper … ’

Source of Information : CSIRO-Open Science Sharing Knowledge in the Global Century 

Heartburn

Written by Science Knowledge on 2:44 AM

While your stomach churns, two valves keep its contents tightly contained. This is important, because the mixture of food and gastric juices is highly acidic and decidedly unwelcome in other parts of your body. If the topmost valve fails and the acidic mixture escapes up your esophagus, the result is heartburn. As you already know, heartburn has nothing to do with your heart, although the burning chest pain can mimic heart trouble. To avoid heartburn, try these tips:

• Elevate yourself. Sit up after a meal, and use pillows or a wedge to prop your upper body while you sleep. This enlists the aid of gravity. (Also, it’s a good idea to avoid eating before you plan to lie down, such as in the 2 hours before bed.)

• Eat small portions. When your stomach is swollen with food, it’s easier for the acidic mixture to burst loose.

• Avoid trigger foods. Most heartburn sufferers can pinpoint problem foods that cause excess acid production. Your list won’t be the same as someone else’s, and potential problem foods—such as spicy meals, acidic fruit drinks, and fizzy soda pop—may be either harmless or exquisitely painful once they’re in your stomach.

• Don’t squeeze. The stomach is a soft pouch. Restrictive clothing, a tight belt, or a hefty layer of subcutaneous fat can put pressure on your stomach, encouraging it to squeeze open like a tube of toothpaste.

If you suffer from an occasional bout of heartburn, your best bet is to treat it with an over-the-counter antacid. Avoid milk—although it can temporarily soothe the stomach, the proteins it contains will soon stimulate increased acid production and possibly make your heartburn worse.

Finally, don’t ignore persistent heartburn. If heartburn strikes two or three times a week for more than 4 weeks, it’s time to bring in a doctor to check for more serious chronic problems. And if you have heartburn that gets worse before meals and fades away as you eat, it may be the sign of an ulcer (a tiny sore in the lining of your stomach), which doctors can often treat with a simple course of antibiotics.

Source of Information : Oreilly - Your Body Missing Manual


About Me

In its broadest sense, science (from the Latin scientia, meaning "knowledge") refers to any systematic knowledge or practice. In its more usual restricted sense, science refers to a system of acquiring knowledge based on scientific method, as well as to the organized body of knowledge gained through such research.

Fields of science are commonly classified along two major lines: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being experimented for its validity by other researchers working under the same conditions.


You are welcome to contact me and leave your comments in my Blog.

Science Knowledge

Want to subscribe?

Science Knowledge

Grab this Headline Animator

Enter your email address:

Delivered by FeedBurner