Primal Programs

Written by Science Knowledge on 10:26 PM

Rethinking cancer by seeing tumors as a cellular pregnancy By Christine Soares

One reason cancer is not considered a single disease but many is that every cancer cell seems to be dysfunctional in its own way. Random mutations in a cell’s DNA initiate its slide into abnormal behavior. And as additional mutations accumulate, that randomness is also thought to account for the diversity in different patients’ tumors, even when they are cancers of the same tissue. But evidence is growing that there is a method to the madness of tumor cells, making some scientists reevaluate the nature of cancer.

Analyzing tumors from dozens of tissue types, Isaac S. Kohane of the Harvard- MIT Division of Health Sciences and Technology has catalogued surprising yet familiar patterns of gene activity in cancer cells—they are the same programmed genetic instructions active during various stages of embryonic and fetal development. Entire suites of genes that drive an embryo’s early growth and the later formation of limbs and other structures in the womb normally go silent during the rest of life, but these genetic programs are switched back on in many tumor cells.

Grouping tumors according to the developmental stage their gene activity most resembles reveals predictive information about those tumors, Kohane has found. In groups of lung tumors, for instance, “malignancy and even time to death of actual patients were directly proportional to the ‘earliness’ of the gene signatures,” he says. In his largest and latest tumor study, Kohane showed that the same holds true across different types of cancer. Comparing gene activity for nearly three dozen kinds of cancer and precancerous conditions against a timeline of 10 developmental processes, he could group seemingly disparate diseases into three categories. Among the tumors with signatures characteristic of the earliest embryonic development stages were lung adenocarcinoma, colorectal adenoma, T cell lymphomas and certain thyroid cancers. The highly aggressive cancers in this group also tend to look most undifferentiated and embryonic. The tumors with gene signatures that mirrored third-trimester and neonatal developmental gene expression patterns tend to be slower-growing types, including prostate and ovarian cancers, adrenal adenoma and liver dysplasia. A third category of tumors represented a mixed bag, in which activity matched aspects of both the other two groups.

Similarities between embryos and tumors “should be paid attention to,” says pioneering cancer researcher Lloyd J. Old, chairman of the Ludwig Institute for Cancer Research New York Branch. “The reason this is so interesting is that the idea that cancer and development are in some way linked goes way back,” he explains. The 19th-century pathologist John Beard, for example, noted the similarity between tumors and the trophoblast, a part of an early embryo that eventually becomes the placenta. “If you’ve ever seen the trophoblast invading the uterus, it invades, spreads, creates a blood supply. It also suppresses the maternal immune system,” Old says. “All of those are characteristics of cancer.”

In his own research, Old has found common genetic programs at work in tumor cells and gametes. One subject of his immunology studies are the cancer/testis (CT) antigens, a group of proteins manufactured almost exclusively by tumors and by sperm- and egg-producing germ-line cells. The specifi city of CT antigens makes them ideal targets for cancer vaccines or antibody-based drugs, Old says; moreover, the activation of CT genes in tumors is telling. “These are programs that you and I used as gametes,” he explains. Seeing these primordial programs reactivated in tumors has led Old to describe cancer as a “somatic cell pregnancy.”

The fact that cancer cells switch on these normally silenced programs suggests to Old that the important characteristics of cancers are not random. “This is a fundamentally different way of thinking. A cell that mutates looks for genes that can help it flourish” and finds them in the suites of developmental genes, he says. “It’s a programmatic origin rather than a Darwinian origin” for cancer traits.

The two views of malignancy, however, do not necessarily confl ict. “It’s not as if accumulating mutations are at odds with the discernible program,” remarks Robert A. Weinberg of the Massachusetts Institute of Technology, noting that the activation of developmental programs could be a downstream consequence of the mutations. Weinberg showed last year that gene activity involved in maintaining embryonic stem cell identity is a common feature of the most undifferentiated-looking and aggressive tumors. Whether that kind of evidence indicates an embryonic program driving those cancers remains to be determined, he cautions: “It’s an interesting concept, but at this stage what they talk about is highly speculative. One can ascribe all manner of human traits to cancers and speculate that it will lead one into therapeutic insights. But the devil is in the details.”

Source of Information : Scientific American(2009-05)

Related Posts by Categories



  1. 0 comments: Responses to “ Primal Programs ”


About Me

In its broadest sense, science (from the Latin scientia, meaning "knowledge") refers to any systematic knowledge or practice. In its more usual restricted sense, science refers to a system of acquiring knowledge based on scientific method, as well as to the organized body of knowledge gained through such research.

Fields of science are commonly classified along two major lines: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being experimented for its validity by other researchers working under the same conditions.


You are welcome to contact me and leave your comments in my Blog.

Science Knowledge

Want to subscribe?

Science Knowledge

Grab this Headline Animator

Enter your email address:

Delivered by FeedBurner