External Ears

Written by Science Knowledge on 3:40 AM

They guide sound to the sensitive middle ear

Looking more like a baby salamander than anything else, a sixweek- old human embryo has tiny paddles for hands, dark dots for eyes and on either side of its shallow mouth slit, half a dozen small bumps destined to form an ear. By nine weeks, these “hillocks” will migrate up the face as the jaw becomes more pronounced and start taking on the recognizable shell shape so handy for holding up eyeglasses. Because development often reprises stages of evolution, the growth of embryonic ears in tandem with the jaw is no accident: the sound-transmitting middle ear bones that are a distinguishing feature of mammals evolved from what used to be gill arches in fish and jawbones in reptiles. The tympanic membrane, or eardrum, that sits just outside the middle ear evolved separately and repeatedly in the ancestors of frogs, turtles, lizards, birds and mammals. Reptilian eardrums can do no more than crudely transmit low-frequency vibrations. To mammals, which have a fancier middle-ear setup, higher-frequency sounds are also audible; external skin and cartilage flaps, called pinnae, are thought to have evolved to capture and funnel those sounds more effectively. The entire human ear structure amplifies sounds by only about 10 to 15 decibels, but our pinnae also usefully modulate the frequency of sounds entering the ear canal. As the contours of the pinnae reflect incoming vibrations, they slightly delay the higher-frequency sounds in a way that cancels out some of them. This so-called notch-filtering effect preferentially delivers sounds in the range of human speech to the inner ear.

Pinnae also help to detect where a sound comes from. Perhaps no animal has a keener directional hearing sense than bats, whose pinnae range in shapes and sizes tailored to the frequencies of each species’ own sonar signals. Another night hunter that relies heavily on hearing, the barn owl, instead uses its large ruff of facial feathers to capture sound and clues to its source. Studies of how human pinnae filter and reflect sounds are informing the design of hearing aids to better reproduce natural aural mechanics. Robots and automated surveillance cameras that turn toward the sound of a disturbance are also being modeled on the human head and external ears.

Source of Information : Scientific American September 2009

Related Posts by Categories

  1. 0 comments: Responses to “ External Ears ”

About Me

In its broadest sense, science (from the Latin scientia, meaning "knowledge") refers to any systematic knowledge or practice. In its more usual restricted sense, science refers to a system of acquiring knowledge based on scientific method, as well as to the organized body of knowledge gained through such research.

Fields of science are commonly classified along two major lines: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being experimented for its validity by other researchers working under the same conditions.

You are welcome to contact me and leave your comments in my Blog.

Science Knowledge

Want to subscribe?

Science Knowledge

Grab this Headline Animator

Enter your email address:

Delivered by FeedBurner