10 Unsolved Mysteries -> How Does the Brain Think and Form Memories?

Written by Science Knowledge on 1:30 AM

The brain is a chemical computer. Interactions between the neurons that form its circuitry are mediated by molecules: specifically, neurotransmitters that pass across the synapses, the contact points where one neural cell wires up to another. This chemistry of the mind is perhaps at its most impressive in the operation of memory, in which abstract principles and concepts—a telephone number, say, or an emotional association—are imprinted in states of the neural network by sustained chemical signals. How does chemistry create a memory that is both persistent and dynamic, as well as able to recall, revise and forget?

We now know parts of the answer. A cascade of biochemical processes, leading to a change in the amounts of neurotransmitter molecules in the synapse, triggers learning for habitual reflexes. But even this simple aspect of learning has shortand long-term stages. Meanwhile more complex so-called declarative memory (of people, places, and so on) has a different mechanism and location in the brain, involving the activation of a protein called the NMDA receptor on certain neurons. Blocking this receptor with drugs prevents the retention of many types of declarative memory.

Our everyday declarative memories are often encoded through a process called long-term potentiation, which involves NMDA receptors and is accompanied by an enlargement of the neuronal region that forms a synapse. As the synapse grows, so does the “strength” of its connection with neighbors—the voltage induced at the synaptic junction by arriving nerve impulses. The biochemistry of this process has been clarified in the past several years. It involves the formation of filaments within the neuron made from the protein actin—part of the basic scaffolding of the cell and the material that determines its size and shape. But that process can be undone during a short period before the change is consolidated if biochemical agents prevent the newly formed filaments from stabilizing.

Once encoded, long-term memory for both simple and complex learning is actively maintained by switching on genes that give rise to particular proteins. It now appears that this process can involve a type of molecule called a prion. Prions are proteins that can switch between two different conformations. One of the conformations is soluble, whereas the other is insoluble and acts as a catalyst to switch other molecules like it to the insoluble state, leading these molecules to aggregate. Prions were first discovered for their role in neurodegenerative conditions such as mad cow disease, but prion mechanisms have now been found to have beneficial functions, too: the formation of a prion aggregate marks a particular synapse to retain a memory.

There are still big gaps in the story of how memory works, many of which await filling with the chemical details. How, for example, is memory recalled once it has been stored? “This is a deep problem whose analysis is just beginning,” says neuroscientist and Nobel laureate Eric Kandel of Columbia University.

Coming to grips with the chemistry of memory offers the enticing and controversial prospect of pharmacological enhancement. Some memory-boosting substances are already known, including sex hormones and synthetic chemicals that act on receptors for nicotine, glutamate, serotonin and other neurotransmitters. In fact, according to neurobiologist Gary Lynch of the University of California, Irvine, the complex sequence of steps leading to long-term learning and memory means that there are many potential targets for such memory drugs.

Source of Information : Scientific American Magazine

Related Posts by Categories



  1. 0 comments: Responses to “ 10 Unsolved Mysteries -> How Does the Brain Think and Form Memories? ”


About Me

In its broadest sense, science (from the Latin scientia, meaning "knowledge") refers to any systematic knowledge or practice. In its more usual restricted sense, science refers to a system of acquiring knowledge based on scientific method, as well as to the organized body of knowledge gained through such research.

Fields of science are commonly classified along two major lines: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being experimented for its validity by other researchers working under the same conditions.


You are welcome to contact me and leave your comments in my Blog.

Science Knowledge

Want to subscribe?

Science Knowledge

Grab this Headline Animator

Enter your email address:

Delivered by FeedBurner