The periodic tables that adorn the walls of classrooms have to be constantly revised, because the number of elements keeps growing. Using particle accelerators to crash atomic nuclei together, scientists can create new “superheavy” elements, which have more protons and neutrons in their nuclei than do the 92 or so elements found in nature. These engorged nuclei are not very stable—they decay radioactively, often within a tiny fraction of a second. But while they exist, the new synthetic elements such as seaborgium (element 106) and hassium (element 108) are like any other insofar as they have well-defined chemical properties. In dazzling experiments, researchers have investigated some of those properties in a handful of elusive seaborgium and hassium atoms during the brief instants before they fell apart.
Such studies probe not just the physical but also the conceptual limits of the periodic table: Do superheavy elements continue to display the trends and regularities in chemical behavior that make the table periodic in the first place? The answer is that some do, and some do not. In particular, such massive nuclei hold on to the atoms’ innermost electrons so tightly that the electrons move at close to the speed of light. Then the effects of special relativity increase the electrons’ mass and may play havoc with the quantum energy states on which their chemistry— and thus the table’s periodicity—depends.
Because nuclei are thought to be stabilized by particular “magic numbers” of protons and neutrons, some researchers hope to find what they call the island of stability, a region a little beyond the current capabilities of element synthesis in which superheavies live longer. Yet is there any fundamental limit to their size? A simple calculation suggests that relativity prohibits electrons from being bound to nuclei of more than 137 protons. More sophisticated calculations defy that limit. “The periodic system will not end at 137; in fact, it will never end,” insists nuclear physicist Walter Greiner of the Johann Wolfgang Goethe University Frankfurt in Germany. The experimental test of that claim remains a long way off.
Source of Information : Scientific American Magazine
No comments:
Post a Comment